Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Anna E. Koziol, ${ }^{\text {a }}$ * Tadeusz Lis, ${ }^{\text {b }}$ Edyta Kolodziejczyk, ${ }^{\text {c }}$ Anna Kusakiewicz-Dawid ${ }^{\text {d }}$ and Barbara Rzeszotarska ${ }^{\text {d }}$

${ }^{\text {a }}$ Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland, ${ }^{\text {b }}$ Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland, 'Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Poland, and ${ }^{\text {d Institute of Chemistry, }}$ University of Opole, 45-052 Opole, Poland

Correspondence e-mail:
akoziol@hermes.umcs.lublin.pl

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.046$
$w R$ factor $=0.115$
Data-to-parameter ratio $=15.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Ethyl 1-acetyl-3-amino-1H-pyrazole-4-carboxylate, a tetragonal structure with $Z^{\prime}=4$

The title compound, $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$, crystallizes with $Z^{\prime}=4$. One pyrazole N atom is substituted and excluded from intermolecular contacts. The amine N , acetyl O and an ester O atom are involved in the formation of nearly planar molecular layers. The layers are perpendicular to the c axis, with an interlayer distance of $3.333 \AA$. The hydrogen-bonding patterns are similar for each molecule, i.e. intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, as well as intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ (pyrazole), bonds are present.

Comment

For crystal engineering, the most interesting cases of molecular association are those with cyclic patterns linking high numbers of molecules. Some mono-, di- and tri-substituted NH-pyrazole derivatives crystallize forming cyclic patterns of -N1-H.NN2-N1-H..N2- hydrogen bonds between pyrazole rings [Cambridge Structural Database (CSD), Version 5.27; Allen, 2002]. Depending on the type, size and position of substituents, the primary motifs (Etter et al., 1990) are $R_{2}^{2}(6)$ dimers, $R_{3}^{3}(9)$ trimers, $R_{4}^{4}(12)$ tetramers or even $R_{6}^{6}(18)$ hexamers (Haghiri et al., 2002; CSD refcode HUMLUW). The CSD refcodes for selected crystal structures with dimeric clusters are: ALACEV, ATOWAH, CAMFUS, CIQHIT, FIWTIP, GISZIR, HEHTUJ, IXAQUT, LADBEX, MAFWAS, OBIZAA, VEHCOA, WILBAU, WILBEY, YEYQOI and YULNUO; with trimeric clusters: FITQAA, RIKNOO, DASXEA, HEHVAR, LETCES, PAMTAY, WIKZUL, LABHEB, TIWKIT, UHENUQ, VILPEL, GOQXIT and HOQHUQ; and with tetrameric clusters: QAMQEA, QOFWUD, MEPHPY, PAHKIT, QOFWOX, RUPSAW, SAKQAX, HUMLUW01, DIRKOE, ESUJOR and QOFXAK. In these crystal structures, the molecular clusters adopt crystallographic symmetry (e.g. $\overline{1}, \overline{3}$ and $\overline{4}$), or they are built of symmetry-independent molecules (Z^{\prime} in the range 2-6).

(I)

A search of the CSD for crystal structures of N1-substituted pyrazole (with simple substituents) containing two or more symmetry-independent molecules revealed only a few exam-

Received 17 July 2006 Accepted 28 July 2006

The structure of one of the four independent molecules of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The open line indicates the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond.

Figure 2
Part of the crystal structure of (I), showing the layer formed via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (dashed lines).
ples (e.g. refcodes BOLQEY, INEPIA, RBZICB and TEQZAQ). Analysis of the intermolecular contacts shows that only $\mathrm{C}-\mathrm{H} \cdots \mathrm{N} / \mathrm{O} / \pi$ interactions and stacking are present. We have now synthesized the new title N1-pyrazole derivative, 1-acetyl-3-amino-4-carbethoxy- $1 H$-pyrazole, (I), the molecules of which are able to form stronger hydrogen bonds of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ type, and present its structure here.

The asymmetric unit of the tetragonal crystal structure of (I) contains four independent molecules, (I A)-(ID), which can be considered as rotated about a pseudo-fourfold axis (located between methyl groups; Fig. 1). The crystal structure is built of molecular layers, perpendicular to the [001] direction, the separation distance being $3.333 \AA$, i.e. $\frac{1}{4}$ of the c parameter. All molecules are nearly planar; their bond lengths are equal to

Figure 3
A fit of the pyrazole rings of the four symmetry-independent molecules of (I). The distance between atoms $\mathrm{C} 8 A$ and $\mathrm{C} 8 B$ is $1.227 \AA$. The $\mathrm{C} 6-\mathrm{O} 7-$ $\mathrm{C} 7-\mathrm{C} 8$ torsion angles are -169.9 (1) and 166.2 (3) ${ }^{\circ}$ for (IA) and (IB), respectively.
within 2σ (Table 1) and they have similar patterns of intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Fig. 2 and Table 2). The donor \cdots acceptor distances of the weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ bonds range from 3.406 (2) to 3.475 (2) Å.

Molecules (I A)-(ID) adopt slightly different conformations of the terminal methyl and ethyl groups (Fig. 3). The transformation of the molecular layers by the 4_{3} screw-axis causes a different environment for each symmetry-independent molecule (Fig. 4). To date, only four crystal structures with the space group $P 4_{1}$ or $P 4_{3}$ and $Z^{\prime}=4$ have been reported (CSD refcodes BEXTEE, CPSCOA, ZEPKUA and XOQQOJ).

Experimental

Acetic anhydride (7.5 mmol) was added to a suspension of 3-amino-4-carbethoxy- 2 H -pyrazole (5 mmol) and dimethylaminopyridine (1 mmol), and after 1 h the white crystalline precipitate which formed was filtered off and washed with dimethylformamide to give (I). Single crystals for X-ray analysis were obtained by recrystallization from methanol.

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=197.20$
Tetragonal, $P 4_{3}$
$a=16.887$ (6) A
$c=13.332(5) \AA$
$V=3802(2) \AA^{3}$
$Z=16$

$$
\begin{aligned}
& D_{x}=1.378 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.63 \times 0.52 \times 0.35 \mathrm{~mm}
\end{aligned}
$$

Data collection

Kuma KM4 CCD area-detector diffractometer
ω scans
Absorption correction: analytical
(CrysAlis RED; Oxford
Diffraction, 2001)
$T_{\text {min }}=0.929, T_{\text {max }}=0.963$
37699 measured reflections
7874 independent reflections
6125 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=37.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.115$
$S=1.03$
7874 reflections
513 parameters

> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.071 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\text {max }}=0.48 \mathrm{e}^{\AA^{-3}}$
> $\Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{N} 1 A-\mathrm{C} 5 A$	$1.353(2)$	$\mathrm{N} 1 C-\mathrm{C} 5 C$	$1.361(2)$
$\mathrm{N} 1 A-\mathrm{N} 2 A$	$1.391(2)$	$\mathrm{N} 1 C-\mathrm{N} 2 C$	$1.392(2)$
$\mathrm{N} 2 A-\mathrm{C} 3 A$	$1.333(2)$	$\mathrm{N} 2 C-\mathrm{C} 3 C$	$1.332(2)$
$\mathrm{C} 3 A-\mathrm{C} 4 A$	$1.441(2)$	$\mathrm{C} 3 C-\mathrm{C} 4 C$	$1.440(2)$
$\mathrm{C} 4 A-\mathrm{C} 5 A$	$1.377(2)$	$\mathrm{C} 4 C-\mathrm{C} 5 C$	$1.373(2)$
$\mathrm{N} 1 B-\mathrm{C} 5 B$	$1.363(2)$	$\mathrm{N} 1 D-\mathrm{C} 5 D$	$1.356(2)$
$\mathrm{N} 1 B-\mathrm{N} 2 B$	$1.390(2)$	$\mathrm{N} 1 D-\mathrm{N} 2 D$	$1.394(2)$
$\mathrm{N} 2 B-\mathrm{C} 3 B$	$1.335(2)$	$\mathrm{N} 2 D-\mathrm{C} 3 D$	$1.333(2)$
$\mathrm{C} 3 B-\mathrm{C} 4 B$	$1.446(2)$	$\mathrm{C} 3 D-\mathrm{C} 4 D$	$1.442(2)$
$\mathrm{C} 4 B-\mathrm{C} 5 B$	$1.365(2)$	$\mathrm{C} 4 D-\mathrm{C} 5 D$	$1.369(2)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 A-\mathrm{H} 3 A 2 \cdots \mathrm{O} 6 A$	0.88	2.43	$3.003(2)$	124
$\mathrm{~N} 3 A-\mathrm{H} 3 A 2 \cdots \mathrm{O} 6 C^{\mathrm{i}}$	0.88	2.26	$2.948(2)$	135
$\mathrm{~N} 3 A-\mathrm{H} 3 A 1 \cdots \mathrm{O} 1 D^{\mathrm{i}}$	0.88	2.14	$3.015(2)$	173
$\mathrm{~N} 3 B-\mathrm{H} 3 B 2 \cdots \mathrm{O} 6 B$	0.88	2.40	$2.977(2)$	124
$\mathrm{~N} 3 B-\mathrm{H} 3 B 2 \cdots \mathrm{O} 6 D^{\text {ii }}$	0.88	2.25	$2.941(2)$	136
$\mathrm{~N} 3 B-\mathrm{H} 3 B 1 \cdots \mathrm{O} 1 A^{\text {ii }}$	0.88	2.18	$3.050(2)$	171
$\mathrm{~N} 3 C-\mathrm{H} 3 C 2 \cdots \mathrm{O} 6 C$	0.88	2.41	$2.984(2)$	123
$\mathrm{~N} 3 C-\mathrm{H} 3 C 2 \cdots \mathrm{O} 6 A^{\text {iii }}$	0.88	2.27	$2.964(2)$	135
$\mathrm{~N} 3 C-\mathrm{H} 3 C 1 \cdots \mathrm{O} 1 B^{\text {iii }}$	0.88	2.15	$3.025(2)$	175
N3 $D-\mathrm{H} 3 D 2 \cdots \mathrm{O} 6 D$	0.88	2.43	$3.006(2)$	123
N3 $D-\mathrm{H} 3 D 1 \cdots \mathrm{O} 1 C^{\text {iv }}$	0.88	2.09	$2.966(2)$	175
$\mathrm{~N} 3 D-\mathrm{H} 3 D 2 \cdots \mathrm{O} 6 B^{\text {iv }}$	0.88	2.26	$2.979(2)$	139

Symmetry codes: (i) $x+1, y, z$; (ii) $x, y-1, z$; (iii) $x-1, y, z$; (iv) $x, y+1, z$.
Of the two possible enantiomeric space groups, $P 4_{1}$ or $P 4_{3}$, the latter was used arbitrarily for the final refinement; in the absence of significant anomalous scattering, the correct space group is unknown. Friedel pairs were merged. All H atoms were positioned geometrically and allowed to ride on their parent atom, with $\mathrm{C}-\mathrm{H}$ bond lengths of $0.95 \AA$ for pyrazole H5 atoms, $0.99 \AA$ for methylene H atoms and $0.98 \AA$ for methyl H atoms, and with $\mathrm{N}-\mathrm{H}$ distances of $0.88 \AA . U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups and $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ for the remaining atoms.

Data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97

Figure 4
The crystal packing of (I), viewed down the c axis. Molecules (I A) are red, (IB) purple, (IC) green and (ID) blue. H atoms have been omitted.
(Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 and enCIFer (Allen et al., 2004).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, $256-$ 262.

Haghiri, A., Lerner, H.-W., Wagner, M. \& Bats, J. W. (2002). Acta Cryst. E58, o1378-o1380.
Oxford Diffraction (2001). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.
Sheldrick, G. M. (1990). SHELXTL/PC. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

